CS143 Handout 14
Summer 2012 July 11, 2012

LALR Parsing

Handout written by Maggie Johnson, revised by Julie Zelenski and Keith Schwarz.

Motivation

Because a canonical LR(1) parser splits states based on differing lookahead sets, it can
have many more states than the corresponding SLR(1) or LR(0) parser. Potentially it
could require splitting a state with just one item into a different state for each subset of
the possible lookaheads; in a pathological case, this means the entire power set of its
follow set (which theoretically could contain all terminals—yikes!). It never actually
gets that bad in practice, but a canonical LR(1) parser for a programming language
might have an order of magnitude more states than an SLR(1) parser. Is there
something in between?

With LALR (lookahead LR) parsing, we attempt to reduce the number of states in an
LR(1) parser by merging similar states. This reduces the number of states to the same as
SLR(1), but still retains some of the power of the LR(1) lookaheads. Let’s examine the
LR(1) configurating sets from an example given in the LR parsing handout.

S'->S§
S -> XX
X -> aX
X ->b
Io! S'-> °S, $ 14! X -> b', a/b
S-> XX, $
X -> «aX, a/b Is: S->XXe, $
X -> b, a/b
Ig: X->a*X, $
I1: S'->Se,$ X->aX, $
X->9p, $
Ir: S-> XX, $
X->e<aX, $ I7: X->Dbe, $
X->¢b, %

Is: X -> aXe, a/b
I: X->a*X, a/b

X -> *aX, a/b Io: X ->aXe, $
X -> b, a/b

Notice that some of the LR(1) states look suspiciously similar. Take I3 and I, for
example. These two states are virtually identical—they have the same number of items,
the core of each item is identical, and they differ only in their lookahead sets. This
observation may make you wonder if it possible to merge them into one state. The

same is true of I; and Iy, and Is and Io. If we did merge, we would end up replacing those
six states with just these three:

I36: X ->aeX, a/b/$
X -> «aX, a/b/$
X -> <b, a/b/$

Lz X ->Dbe, a/b/$
Ig9: X -> aXe, a/b/$
But isn’t this just SLR(1) all over again? In the above example, yes, since after the

merging we coincidentally end up with the complete follow sets as the lookahead. This
is not always the case however. Consider this example:

S'->S

S -> Bbb | aab | bBa

B->a

Ip: S'-> 5, % Ip: S->Bebb, $

S -> *Bbb, $ L S o
S_> .aab,$ 3. -> a°*a ,$
S-> bBa, $ B->as b
B—> ea, b

Il. SI -=> S.I$

In an SLR(1) parser there is a shift-reduce conflict in state 3 when the next input is
anything in Follow(B)which includes a and b. In LALR(1), state 3 will shift on a and
reduce on b. Intuitively, this is because the LALR(1) state "remembers" that we arrived
at state 3 after seeing an a. Thus we are trying to parse either Bbb or aab. In order for
that first a to be a valid reduction to B, the next input has to be exactly b since that is the
only symbol that can follow B in this particular context. Although elsewhere an
expansion of B can be followed by an a, we consider only the subset of the follow set
that can appear here, and thus avoid the conflict an SLR(1) parser would have.

LALR Merge Conflicts

Can merging states in this way ever introduce new conflicts? A shift-reduce conflict
cannot exist in a merged set unless the conflict was already present in one of the
original LR(1) configurating sets. When merging, the two sets must have the same core
items. If the merged set has a configuration that shifts on a and another that reduces on
a, both configurations must have been present in the original sets, and at least one of
those sets had a conflict already.

Reduce-reduce conflicts, however, are another story. Consider the following grammar:
S'->S
S ->aBc | bCc | aCd | bBd
B->e
C->e

The LR(1) configurating sets are as follows:

I: S'-> 95, % I3: S->beCc, $
S->e«aBc, $ S->Dbe*Bd, $ Is: S->DbBed, $
S-> +bCc, $ C-> e, C
S->+aCd, $ B->-+e,d Iy B->ee,d
S->+bBd, $ C->ee°, C
Iy: S->aBec, $
I S'->Se°,$ Iio: S->aBce, $
I5: S->aC-d, $
I S->a°*Bc $ I;1: S->aCde, $
S->a*Cd, $ Ig: B->ee-, c
B->-¢e,c C->e-, d I1p: S->DbCce, $
C-> e, d
I7: S -> bC'C, $ 113: S -> de', $

We try to merge I, and Iy since they have the same core items and they only differ in

lookahead:
Igg: C->¢e, c/d
B->e, d/c

However, this creates a problem. The merged configurating set allows a reduction to
either B or C when next token is ¢ or d. This is a reduce-reduce conflict and can be an
unintended consequence of merging LR(1) states. When such a conflict arises in doing a
merging, we say the grammar is not LALR(1).

LALR Table Construction

A LALR(1) parsing table is built from the configurating sets in the same way as
canonical LR(1); the lookaheads determine where to place reduce actions. In fact, if
there are no mergable states in the configuring sets, the LALR(1) table will be identical
to the corresponding LR(1) table and we gain nothing.

In the common case, however, there will be states that can be merged and the LALR
table will have fewer rows than LR. The LR table for a typical programming language
may have several thousand rows, which can be merged into just a few hundred for
LALR. Due to merging, the LALR(1) table seems more similar to the SLR(1) and LR(0)
tables, all three have the same number of states (rows), but the LALR may have fewer
reduce actions—some reductions are not valid if we are more precise about the
lookahead. Thus, some conflicts are avoided because an action cell with conflicting
actions in SLR(1) or LR(0) table may have a unique entry in an LALR(1) once some
erroneous reduce actions have been eliminated.

Brute Force?

There are two ways to construct LALR(1) parsing tables. The first (and certainly more
obvious way) is to construct the LR(1) table and merge the sets manually. This is
sometimes referred as the "brute force" way. If you don’t mind first finding all the
multitude of states required by the canonical parser, compressing the LR table into the
LALR version is straightforward.

1. Construct all canonical LR(1) states.

2. Merge those states that are identical if the lookaheads are ignored, i.e., two
states being merged must have the same number of items and the items
have the same core (i.e., the same productions, differing only in
lookahead). The lookahead on merged items is the union of the lookahead
from the states being merged.

3. The successor function for the new LALR(1) state is the union of the
successors of the merged states. If the two configurations have the same
core, then the original successors must have the same core as well, and
thus the new state has the same successors.

4. The action and goto entries are constructed from the LALR(1) states as for
the canonical LR(1) parser.

Let’s do an example, eh?

Consider the LR(1) table for the grammar given on page 1 of this handout. There are
nine states.

State on Action Goto
top of a b $ s X
stack

0 s3 s4 1 2
1 Acc

2 s6 s7 5
3 s3 s4 8
4 r3 r3

5 rl

6 s6 s7 9
7 r3

8 r2 r2

9 r2

Looking at the configurating sets, we saw that states 3 and 6 can be merged, so can 4
and 7, and 8 and 9. Now we build this LALR(1) table with the six remaining states:

State on Action Goto
top of a b $ S X
stack
0 S36 s47 1 2
1 acc
2 S36 s47 5
36 S36 s47 89
47 r3 r3 r3
5 rl
89 r2 r2 r2

The More Clever Approach

Having to compute the LR(1) configurating sets first means we won’t save any time or
effort in building an LALR parser. However, the work wasn’t all for naught, because
when the parser is executing, it can work with the compressed table, thereby saving
memory. The difference can be an order of magnitude in the number of states.

However there is a more efficient strategy for building the LALR(1) states called step-by-
step merging. The idea is that you merge the configurating sets as you go, rather than
waiting until the end to find the identical ones. Sets of states are constructed as in the
LR(1) method, but at each point where a new set is spawned, you first check to see

whether it may be merged with an existing set. This means examining the other states
to see if one with the same core already exists. If so, you merge the new set with the
existing one, otherwise you add it normally.

Here is an example of this method in action:

S' -> S

S -> V=E

E -> F|E+F

F -> V]int] (E)
vV -> id

Start building the LR(1) collection of configurating sets as you would normally:

Ip: S'-> 5, % I4: S->V=°¢E$ 17 F-> Ve, $/+
S->eV=E$% E-> °F, $/+
V -> «id, = E-><E+F, $/+ Is: F->inte, $/+
F->eV, $/+
Ii: S'->S-, % F->eint, $/+ lo: F-> (°E), $/+
F-><(E), $/+ E-> oF,)/+
I S'->Ve=E#$ V ->eid, $/+ E->°<E+F,)/+
F-> eV,)/+
Iy V->ide, = i S->V=E$ F-> «int,)/+
E->E*+F, $/+ F-> «(E),)/+
V -> «id)/+

Ig: E-> Fe, $/+
I F-> (E*), $/+
E->Ee +F,)/+

When we construct state I;;, we get something we’ve seen before:
I11: E ->Fe,)/+

It has the same core as Is, so rather than add a new state, we go ahead and merge with
that one to get:

Is11: E ->Fe, $/+/)

We have a similar situation on state I;; which can be merged with state I;. The
algorithm continues like this, merging into existing states where possible and only
adding new states when necessary. When we finish creating the sets, we construct the
table just as in LR(1).

LALR(®1) Grammars

A formal definition of what makes a grammar LALR(1) cannot be easily encapsulated in
a set of rules, because it needs to look beyond the particulars of a production in
isolation to consider the other situations where the production appears on the top of the

stack and what happens when we merge those situations. Instead we state that what
makes a grammar LALR(1) is the absence of conflicts in its parser. If you build the
parser and it is conflict-free, it implies the grammar is LALR(1) and vice-versa.

LALR(1) is a subset of LR(1) and a superset of SLR(1). A grammar that is not LR(1) is
definitely not LALR(1), since whatever conflict occurred in the original LR(1) parser will
still be present in the LALR(1). A grammar that is LR(1) may or may not be LALR(1)
depending on whether merging introduces conflicts. A grammar that is SLR(1) is
definitely LALR(1). A grammar that is not SLR(1) may or may not be LALR(1)
depending on whether the more precise lookaheads resolve the SLR(1) conflicts.
LALR(1) has proven to be the most used variant of the LR family. The weakness of the
SLR(1) and LR(0) parsers mean they are only capable of handling a small set of
grammars. The expansive memory needs of LR(1) caused it to languish for several
years as a theoretically interesting but intractable approach. It was the advent of
LALR(1) that offered a good balance between the power of the specific lookaheads and
table size. The popular tools yacc and bi son generate LALR(1) parsers and most
programming language constructs can be described with an LALR(1) grammar
(perhaps with a little grammar massaging or parser trickery to skirt some isolated
issues).

Error Handling

As in LL(1) parsing tables, we can implement error processing for any of the variations
of LR parsing by placing appropriate actions in the parse table. Here is a parse table for
a simple arithmetic expression grammar with error actions inserted into what would
have been the blank entries in the table.

E->E+E|E*E|(E)]id

State on Action Goto
top of id + * () $ E
stack

0 s3 el el s2 e2 el 1
1 e3 s4 s5 e3 e2 acc

2 s3 el el s2 e2 el 6
3 e3 r4 r4 e3 r4 r4

4 s3 el el s2 e2 el 7
5 s3 el el s2 e2 el 8
6 e3 s4 s5 e3 s9 ed

7 e3 rl s5 e3 rl rl

8 e3 r2 r2 e3 r2 r2

9 e3 r3 r3 e3 r3 r3

Error el is called from states 0, 2, 4, 5 when we encounter an operator. All of these
states expect to see the beginning of an expression, i.e., an id or a left parenthesis. One
way to fix is for the parser to act as though id was seen in the input and shift state 3 on
the stack (the successor for id in these states), effectively faking that the necessary token
was found. The error message printed might be something like "missing operand".
Error e2 is called from states 0, 1, 2, 4, 5 on finding a right parenthesis where we were
expecting either the beginning of a new expression (or potentially the end of input for
state 1). A possible fix: remove right parenthesis from the input and discard it. The
message printed could be "unbalanced right parenthesis."

Error e3 is called from state 1, 3, 6, 7, 8, 9 on finding id or left parenthesis. What were
these states expecting? What might be a good fix? How should you report the error to
the user? Error e4 is called from state 6 on finding $. What is a reasonable fix? What do
you tell the user?

Bibliography
A. Aho, R. Sethi, J. Ullman, Compilers. Principles, Techniques, and Tools. Reading, MA:
Addison-Wesley, 1986.

J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill,
1990.

K. Loudon, Compiler Construction. Boston, MA: PWS, 1997

A. Pyster, Compiler Design and Construction. New York, NY: Van Nostrand Reinhold,
1988.

